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Incompressible Newtonian flow in a two-dimensional channel with periodically placed 
sharp edged baffles has been studied both by numerical simulation and by experimental 
flow visualization. The flow was observed to be steady and symmetric at low Reynolds 
numbers, with recirculating eddies downstream of each baffle. At a critical Reynolds 
number (based on channel width and cross-sectional mean velocity) of approximately 
100 the flow became asymmetric and unsteady. This transition to unsteadiness led to 
an eddy shedding regime, with eddies formed and shed successively from each baffle. 
A stability study suggested that the mechanism for transition to unsteady flow is a 
Kelvin-Helmholtz instability associated with the shear layer formed downstream of 
the sharp edged baffles. The frequency of the unsteadiness is, however, dependent on 
the full flow field, and not only the shear layer characteristics. Experimental 
observations show that the instability is followed by a secondary transition to three- 
dimensional disordered flow. Experimentally observed flows in the two-dimensional 
regime were found to be in close agreement with the numerical simulation for both the 
steady and unsteady flows. 

1. Introduction 
The transition of a flow from a stable steady state to an unsteady regime can be 

regarded as the first step towards a fully developed turbulent flow. The nature of this 
transition may therefore affect both the route taken towards turbulence, and perhaps 
even the form of the turbulent flow itself. Historically, theoretical studies of this type 
of transition have centred around classical stability theories (e.g. Lin 1955). Stability 
theory has developed so that transition processes in some simple (parallel) flows can 
now be explained using linear and nonlinear stability theory (Orszag & Patera 1983). 
More recently classical stability and bifurcation theories have been combined with 
modern numerical flow modelling in order to study transition for flows in more 
complex geometries. This has led to improvement in the understanding of symmetry 
breaking properties (Sobey & Drazin 1986) and transition mechanisms (Ghaddar et al. 
1986; Karniadakis, Mikic & Patera 1988) for flows in engineering geometries. This 
work has indicated the need for further studies of transition processes for flows in a 
range of geometries, so that a general understanding of low-Reynolds-number 
transition can be established. Furthermore, a study which includes experimental 
observations of how the first transition affects the developing flow will provide further 
insight into transition mechanisms. Some of the relevant developments in the 
understanding of transition processes and the use of classical stability and bifurcation 
theories is outlined below. 

t Present address : EA Technology, Environmental Technology Division, Capenhurst, Chester, 
CH16ES, UK. 
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The stability and symmetry breaking properties of two-dimensional channel flows 
has been the subject of interest for many years (e.g. Lin 1955). Although the equations 
describing the stability of simple parallel flows were formulated early this century (in 
the form of the classical Orr-Sommerfeld equation, Drazin & Reid 1981), accurate 
numerical solutions to these equations have only been possible in the last thirty years 
(Orszag 1971). The stability of plane Poiseuille flow has been the subject of detailed 
study, and has been shown to go through a subcritical Hopf bifurcations at a critical 
Reynolds number (based on mean velocity and channel width) of order 7700 (Orszag 
197 1). At this Reynolds number two-dimensional viscous perturbations, known as 
Tollmien-Schlicting waves (Drazin & Reid 1981), will become unstable and grow with 
time. This is in sharp contrast to experimental observations which show a transition to 
a turbulent flow that occurs at a Reynolds number of order 2000 (e.g. Kao & Park 
1970). This transition has been explained numerically by Orszag & Kells (1980) who 
showed that the plane Poiseuille flow with a small amplitude (but finite and stable) 
Tollmein-Schlichting perturbation can become unstable to infinitesimal three- 
dimensional perturbations. 

In recent years bifurcation theory has been found to be particularly useful for the 
understanding of flow transitions (e.g. Sobey & Drazin 1986). Two types of bifurcation 
have been commonly observed in the field of fluid mechanics: the fold and the Hopf 
bifurcations. A fold bifurcation is a transition from a flow with a single stable state to 
a flow with two possible stable solutions. A Hopf bifurcation is the transition of a flow 
from a steady stable regime to an unsteady flow. From a dynamical systems viewpoint, 
the equations describing the flow of an incompressible Newtonian fluid are a damped 
nonlinear system under one control parameter (Reynolds number), and would be 
typically expected to go through either a fold bifurcation or a Hopf bifurcation at some 
critical Reynolds number (Thompson & Stewart 1986). The fold bifurcation can take 
a number of different forms (e.g. transcritical, saddle-node), and for a symmetric 
geometry is expected to be a cusp bifurcation, which is the transition of a symmetric 
steady flow to a flow with two possible asymmetric steady states. A Hopf bifurcation 
can take one of two forms: a subcritical Hopf bifurcation, which is typically a 
transition from a steady state to a nonlinear unsteady flow, and a supercritical Hopf 
bifurcation, which is a transition from a steady state to a stable unsteady but periodic 
solution. These bifurcations have been observed for a wide range of geometries, and 
the transition behaviour of some of the more relevant geometries is discussed below. 

A frequently studied geometry is the symmetric sudden channel expansion. The flow 
in this geometry is experimentally observed to go through a cusp bifurcation from a 
stable symmetric state to two stable asymmetric states, with the main stream of the flow 
attaching to one of the walls (e.g. Durst, Malling & Whitelaw 1974). Sobey & Drazin 
(1986) have studied the bifurcation behaviour of these flows in detail using numerical 
simulation, and have observed up to seven steady asymmetric solutions. The flow was 
observed both experimentally and numerically to become unsteady and periodic at a 
critical Reynolds number of order 150. The numerical observation of two-dimensional 
periodicity suggests that this second transition is caused by a two-dimensional Hopf 
bifurcation. Fearn, Mullin & Cliffe (1989), however, have attributed the unsteadiness 
to a three-dimensional instability, as they were unable to locate the transition using a 
two-dimensional simulation. This difference may be caused by the periodicity in the 
model used by Sobey & Drazin (1986). 

Notable numerical studies of transition in periodic channel flow include the grooved 
channel of Ghaddar et al. (1986), and the cylindrically obstructed channel studied by 
Karniadakis et al. (1988). Ghaddar et al. (1986) observed that the flow in a periodically 
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FIGURE 1. The baffled channel geometry. 

grooved channel became unstable to two-dimensional perturbations at a Reynolds 
number of order 1200. This instability was shown to result in a supercritical Hopf 
bifurcation to a periodic unsteady flow. The perturbation solution was found to be 
wavelike, with frequency approximately given by the frequency of a Tollmien- 
Schlichting wave at the perturbation wavelength. This transition was apparently 
caused by an instability of the shear layer in the groove exciting the stable 
Tollmien-Schlichting waves in the channel. Karniadakis et al. (1988) have studied the 
stability of a two-dimensional channel flow with periodic cylindrical obstructions. 
They observed that this flow also went through a supercritical Hopf bifurcation, but 
at the lower Reynolds number of approximately 125. The frequency was again found 
to be close to the Tollmien-Schlichting frequency, with the unstable wake flow exciting 
the stable channel perturbation wave. 

This bifurcation of the flow from a steady state to a stable periodic oscillation is 
common to many different obstructed flows, for example flow over aerofoils, cylinders 
and other geometries (e.g. Fortin, Fortin & Gervais 1987; Sreenivasan & Strykowski 
1987). Oscillations have also been observed in turbulent shear layers and jets (for a 
review see Ho & Huerre 1984). Clearly bifurcation theory and stability studies can help 
to provide a deeper understanding of observed asymmetric behaviour (e.g. Sobey & 
Drazin 1986) and transition mechanisms. The first transition to unsteady flow is also 
important in engineering terms. From a Lagrangan viewpoint an unsteady flow is 
fundamentally different to a steady flow, as advected particles are no longer 
constrained to follow streamlines. This can result in chaotic mixing even for simple 
flows (Aref 1984), and can have a dramatic effect not only on the mixing rates (e.g. 
Howes, Mackley & Roberts 1991), but also on heat and mass transfer (Karniadakis 
et al. 1988), filtration (Mackley & Sherman 1992), and particulate processes. 

In this paper the flow of an incompressible Newtonian fluid in a two-dimensional 
periodically baffled channel (see figure 1) is investigated using numerical and 
experimental techniques. This type of periodically obstructed geometry appears 
frequently in engineering situations, particularly with heat transfer applications (e.g. 
Kays & London 1964). Periodic baffles have been used as turbulence enhancers in 
order to generate the increased heat transfer coefficients observed by Kays & London 
(1964), and as eddy generators in an oscillatory flow (Brunold et al. 1989). In addition 
to the engineering importance of the geometry, the baffled channel flow is a suitable 
geometry for a numerical study of stability and transition processes. Stable and 
unstable steady flows can easily be obtained, owing to the symmetric nature of the 
geometry. The symmetry of the geometry also allows the definition of a simple 
perturbation parameter for stability studies and the streamwise periodicity avoids the 
problems associated with the definition of entry and exit boundary conditions. The 
presence of a sharp edge ensures that the flow will separate and generate a shear layer 
at moderate Reynolds number, a common feature of geometries that show an early 
transition to unsteadiness. 
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The paper is divided into seven sections. In $2 the theoretical equations and the 
numerical techniques are described. A description of the experimental flow 
visualization techniques used is presented in $ 3 .  The observed flow patterns are 
described in $4. In $ 5  the observed stability behaviour of the numerically obtained 
flows is described, including a brief study of the base case of plane Poiseuille flow. This 
section includes the successful estimation of the critical Reynolds number using both 
linear and nonlinear techniques. An analysis of the transition mechanism for the 
instability described in $04 and 5 is presented in $6. The final section is a concluding 
discussion of the results described in this paper. 

2. Theoretical equations and numerical techniques 
The geometry studied is a periodically baffled channel as shown in figure 1. With the 

exception of $ 5 ,  where the effect of geometric variation on stability behaviour is 
studied, only one set of values of the geometric parameters has been used. The flow is 
assumed to be two-dimensional in x and y, and periodic in x. 

The fluid mechanics model is in the form of a vorticity - streamfunction finite 
difference solver for an incompressible Newtonian fluid. The scheme used is based on 
the work of Sobey (1980) for furrowed channels, and Howes (1988) for ducted tubes. 
The definition of a streamfunction restricts the model to two spatial dimensions. This 
model has been used by Howes (1988) to study axisymmetric tube flow, while the 
results presented in this paper are for two-dimensional channel flow, allowing the 
relaxation of the centreline symmetry constraint. 

In the equations below, length has been made dimensionless with channel width ( H ) ,  
velocities with mean velocity ( U ) ,  and time with U / H .  Vorticity ( w )  and streamfunction 
($) are defined in the usual way: 

u = ($), 
v = - g )  (3) 

Where u and v are the dimensionless velocities in the x and y directions, respectively. 
These definitions lead to Poisson type relationship between w and $: 

From the two-dimensional Navier-Stokes equation and (l), the vorticity transport 
equation can be derived: 

For the geometry of figure 1 the boundary conditions for these equations are as 
follows : 

(a) No slip at the walls: u = u = 0 on all walls and baffles; (6) 
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(b) The total volumetric flow rate is equal to the difference in the streamfunction at 
the top and bottom walls: 

Top wall: y? = 0.5 sin (2zt) for t < 0.25, (7) 

$ = 0.5 for t > 0.25, (8) 

Bottom wall: @ = -0.5 sin (2zt) for t < 0.25, (9) 

l+k = -0.5 for t > 0.25. (10) 

The flow is accelerated from rest using (7) and (9), and observed to reach a fully 
developed steady state at long times. Note that the streamfunction boundary 
conditions are symmetric in order to avoid the accumulation of asymmetric numerical 
errors. The flow can be forced to be symmetric by solving one half of the domain of 
interest and using a centreline boundary condition : 

w = $ = 0 on the centreline. (1 1) 

Finite difference versions of (2)-(5) form the base equations for the numerical 
simulation. The vorticity transport equation (5) is used to step forward in time, the 
Poisson-like equation (4) is then solved for the streamfunction and the velocities are 
obtained from the definition of streamfunction (2) and (3). The boundary vorticity is 
obtained using a Taylor expansion of streamfunction away from the wall, and 
substituting into (4). On the baffles, two values of boundary vorticity are assigned, and 
at the sharp edge itself, three values are used. This three-value technique was 
recommended by Roache (1976), but he goes on to conclude that good accuracy at a 
sharp corner can only be obtained by solving in polar coordinates on a local fine grid 
centred on the sharp corner. The global flow patterns and the stability behaviour were 
not found to be sensitive to the treatment of the sharp edge. As the details of the flow 
close to the sharp edge itself are not the subject of interest in this paper, the three-value 
technique was thought to provide sufficient accuracy. Centred differencing is used for 
accuracy and the explicit leapfrog method of Dufort & Frankel (see Roache 1976) is 
used for the timestepping of the vorticity transport equation. The length of the timestep 
is chosen to retain numerical stabiiity (based on the convective terms), and typically for 
these simulations was 0.0025. 

The finite-difference equations were solved on a regular grid laid over one cycle of 
the geometry. The grid size was varied in order to establish a reliable operating regime 
for the simulation. The total number of grid points was varied from 54 (6 x 9 grid) up 
to 10578 (82 x 129 grid). For both steady and time-dependent flows the observed 
streamlines were unchanged for grids with more than 1406 points (38 x 37 grid). In 
quantitative terms the vortex strength (2{ykmaZ-0.5)) changed by less than 1 % for 
grids with more than 1406 points for a steady flow at Re = 100. Similarly for an 
unsteady flow with Re = 200 the growth rate and frequency of the instability ( a , ~ )  
both changed by less than 1 YO for difference grids with more than 1406 points. At a 
grid size of 33 x 34 some instability of the vorticity associated with the centred 
differencing technique is observed close to the sharp edge at Re = 200. With a grid size 
of 42 x 65 this instability was eliminated. From these observations a grid with 2730 
points (42 x 65) was chosen to give numerical stability without excessive computation 
time. 

Solutions from the simulation with an unbaffled channel ( B  = 0) were compared 
with the analytical solution of a parabolic velocity profile. The error in the stream 
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function values was observed to be less than 0.5 YO. In order to test the accuracy of the 
time dependence of the sirhulation a comparison was made with analytical solutions 
for sinusoidal oscillatory flow in an unbaffled channel. Accurate values of the stream 
function were obtained with errors again < 0.5 YO. 

The Poisson equation was solved using a multi-grid technique, with residuals solved 
on successively coarse grids. The spatial periodicity of the flow is achieved numerically 
by substituting forwards and backwards the conditions at the exit and entry of each 
cell. 

Further details of the numerical techniques and accuracy tests are described by 
Howes et al. (1991) and Roberts (1992). 

The stability of the flow is studied using classical perturbation techniques. The basic 
method for studying the stability of a given flow is described in many modern fluid 
mechanics text books (e.g. White 1974). Assuming a known steady solution (yk,, us) to 
the flow equations (4) and ( 5 )  (with appropriate boundary conditions) has been 
obtained, a small perturbation ( y k p ,  up) is superimposed onto this solution. Thus: 

In order to determine whether (yks,  w,) is a stable solution, it is necessary to determine 
whether a small perturbation will grow or decay with time. The behaviour of finite 
perturbations can be observed using the solver described above. The perturbation takes 
one of two forms, depending on the stability of the flow. For stable flows, an artificial 
perturbation is applied by starting the flow at t = 0 with an arbitrary asymmetric flow. 
Provided the steady symmetric flow is the only stable solution the flow will converge 
to this stable state. For unstable flows the flow is started with its symmetric solution 
obtained using the boundary condition (1 l), and the perturbation is the result of small 
truncation errors generated by the computer. 

The perturbation field ($lp, w p )  can be observed by subtracting the perturbed flow 
form the initial unperturbed flow : 

A perturbation amplitude parameter (x) is chosen as the mean absolute value of the 
vertical velocity on the centreline : 

Although a parameter which averages over the whole volume could be used (e.g. the 
mean sum of the streamfunction on either side of the centreline as used by Sobey & 
Drazin 1986), x has been chosen for its physical significance: ~ x L  is equal to the 
volumetric exchange rate across the centreline. By observing the behaviour of x with 
time for small x (x 4 1) the linear stability behaviour can be studied. 

This approach differs from the normal approach to stability studies where the 
equations for an infinitessimal perturbation are solved independently (e.g. Ghaddar 
et al. 1986). These linear perturbation equations are obtained by substituting (12) into 
the flow equations ((4) and (5)). Assuming that the perturbation is small products and 
higher powers of the perturbation terms can be neglected and some terms will cancel 
from the equations as (yks,ws) is known to be a solution. The technique used in this 
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Flow straightener 

paper has the advantage that it does not require a separate solver to establish the 
stability behaviour. This approach is not limited to linear perturbations, as large 
nonlinear perturbations can also be studied. However, different instability modes 
cannot be observed, and the limitation to finite-amplitude perturbations makes the 
absolute stability of a flow difficult to establish. 

3. Experimental flow visualization 
A diagram of the experimental apparatus is shown in figure 2. The test section 

consisted of a Perspex channel with periodically placed stainless steel baffles push fitted 
into the walls. The channel width was 25 mm, with an aspect ratio of 1 : 8, and a length 
of 1.3 m (34 baffles). The fluid used was a mixture of methylated spirits and water (60 % 
water, kinematic viscosity 2.535 x low6 m2/s at 20 "C). 

Flow was provided by a centrifugal pump and flow loop, with flowrates measured 
using two calibrated rotameters. From the rotameters the fluid was fed into a 0.4 m 
length, 50mm diameter tube fitted with a flow straightener close to the entrance 
consisting of an array of thin-walled tubes of diameter - 3 mm. The tube was also 
fitted with a flexible diaphragm to reduce any pressure fluctuations generated by the 
pump. The 50mm tube was connected to the rectangular channel via a diffuser 
machined to give a smooth transition from a cylindrical to rectangular geometry. A 
second flow straightener was positioned in the rectangular channel in order to dampen 
any disturbances in the entrance region. A 0.2m unbaffled entrance region was 
included downstream of the flow straightener. 

A mercury vapour lamp was used to provide planar illumination (in the (x, y)-plane) 
through a narrow slit - 3 mm wide at the centreline of the channel. In order to study 
cross-channel motions a horizontal plane of light (in the (x, 2)-plane) just above the 
centreplane ( y  = i H )  of the channel was used. Light scattering was achieved with 

1-2 
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FIGURE 3. Comparison of streamlines and experimental streakline photograph. (a) Numerically 
obtained streamlines. Re = 60, $ at intervals of 0.05, and two extra streamlines to show recirculation. 
(b) Experimental streakline photograph. Re = 58.5, Exposure time = f s. 

neutrally buoyant polyethylene particles having diameter of order 100 pm. Constant 
volumetric flow was obtained using a centrifugal pump and flow loop, with flowrates 
measured using a set of rotameters. 

The flow patterns were observed using either a video camera or a 35 mm SLR stills 
camera. Streakline photographs of the flow were taken with exposure times between 
& s and 2 s. Stills taken from the video recordings correspond to an exposure time of 
approximately & s. The streakline photographs reproduced in the paper show the flow 
patterns observed 18 baffles downstream of the entrance. This should ensure that the 
flow is fully developed for the range of Reynolds numbers studied in this paper. 

4. Observed flow patterns 
In this section observed flow patterns for constant volumetric flow in baffled 

channels are described. The section is divided into two parts. The first describes 
symmetric flows, obtained numerically using the centreline boundary condition 
described above. These constrained symmetric flows are compared with the 
experimentally obtained symmetric flows which occur at low Reynolds numbers. The 
second part describes asymmetric flows obtained from the simulation, and these flows 
are compared with experimentally observed asymmetric flows at intermediate Reynolds 
numbers. 

4.1. Symmetric$ows 
Symmetric flow patterns have been obtained from the numerical model using the 
centreline boundary conditions described above. The flow patterns observed under 
these conditions are typical of the types of flows observed in obstructed geometries 
under laminar flow conditions. A recirculating flow is observed downstream of each 
baffle which grows with Re, as observed for baffled tubes (e.g. Rowley & Patankar 
1984; Howes 1988) and in a sudden channel expansion (e.g. Sobey 1985). Under these 
conditions the flow was observed to reach a fully developed steady state after t - 5. 
The observed experimental streakline photographs showed good agreement with the 
numerical streamlines for Reynolds numbers less than - 100. Figure 3 shows a 
comparison of the numerically observed streamlines with the experimentally obtained 
streakline photograph for Re - 60. 

Slight asymmetry was observed in the experimental photographs for flows in this 
regime. This asymmetry was probably due to small geometric asymmetries and 
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FIGURE 4. Streamlines for constrained symmetric flow with Re = 300. + at 0.1 intervals, and 
four extra streamlines to show recirculation. 
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FIGURE 5. Velocity profiles at two different locations. Re = 200. 

buoyancy effects created by the warmth of the illumination. Video observations 
showed that the flow in this regime was steady. At the entrance to the test section the 
flow was observed to require 2-3 cells to become fully developed so that the same flow 
pattern was observed in each cell. 

Figure 4 shows the numerically observed streamlines for the constrained symmetric 
flow at Re = 300. For Re > - 100 the separated regions occupy most of the inter-baffle 
space, with the main stream of the flow constrained between the tips of the baffles. This 
type of flow is reminiscent of a confined planar jet, and is approximately parallel. 
Figure 5 shows the velocity profiles just downstream of the baffles and midway between 
the baffles for Re = 200. These velocity profiles suggest that the flow is close to a core 
Poiseuille flow, with the core flow showing an approximately parabolic velocity profile 
and the inter-baffle region occupied with slow moving fluid. At Re = 400 the flow is 
observed to become unsteady, though the amplitude of the unsteady motion is 
relatively low. This unsteadiness may be due to either a symmetric instability, a 
numerical instability generated at high Reynolds numbers close to the sharp edge or it 
may be an artefact of the numerical simulation. 

4.2. Asymmetric flows 

If the centreline symmetry constraint is relaxed then at a Reynolds number between 
Re = 100 and Re = 120 the flow becomes unsteady and periodic, with eddies shed 
successively from top and bottom baffles. This transition to an unsteady asymmetric 
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FIGURE 6. Comparison of a sequence of instantaneous streamlines with video frames for 
Re = 132. y? at intervals of 0.1. Dimensionless time difference between figures = 0.43. 
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flow has also been observed experimentally at a Reynolds number between Re = 100 
and Re = 116. Figure 6 shows a comparison between the experimentally observed flow 
patterns and the numerically generated instantaneous streamlines in this asymmetric 
eddy shedding regime, at Re = 132. The experimental streaklines shown have been 
obtained from a video sequence of the flow. Each picture shows a frame from the 
sequence at five equally spaced instants in approximately one half period of the flow. 
The numerically generated streamline sequence was obtained as follows. The streamline 
patterns were followed for a number of timesteps until the flow patterns corresponded 
qualitatively with the experimentally observed flow patterns, so that the phase of the 
oscillation could be established. The sequence of four further plots was then obtained 
by continuing the simulation for the equivalent dimensionless time intervals as those 
between each of the video frames. The amplitudes of the asymmetry and the timescale 
of the unsteadiness show good agreement between the experimental and numerical 
observations. An approximate dimensionless frequency (a, made dimensionless with 
channel width and the cross-sectional mean velocity) was obtained by frame counting 
from the video sequence of = 0.46f0.02 compared with the numerically obtained 
value of D = 0.467. 

The experimental flow patterns also show that the flow at the exit of the cell is similar 
to the flow at the entry to the cell, confirming that a periodic boundary condition is 
appropriate in this regime. The assumption of periodicity over a single cell was also 
tested numerically by performing simulations over 2, 6 and 12 cells. No change in the 
fully developed flow fields was observed. 

At Reynolds numbers of order 160 the flow goes through a secondary instability and 
the observed experimental flow patterns become three-dimensional and disordered. As 
the numerical model is not capable of predicting three-dimensional flow patterns it is 
not possible to accurately simulate the fully developed flow patterns in this regime. By 
accelerating the flow rapidly from rest some comparisons of approximately two- 
dimensional flows were possible for Re > 160. The initially symmetric flows developed 
large-amplitude asymmetry with periodic eddy shedding before the secondary three- 
dimensional instability took over and the flow became chaotic. Figure 7 shows a 
comparison of this large-amplitude asymmetric flow for Re = 244 with the numerical 
streamlines obtained for Re = 250. As in figure 6 the experimental figures are frames 
from a video sequence corresponding to approximately one half cycle of the flow, and 
the numerical flow was followed until the two were qualitatively in phase. The 
asymmetry in the experimental flow is still developing and has not reached the level 
observed using the simulation. The form of the flow patterns, and the timescale of the 
eddy shedding show good agreement. These observations suggest that the flows shown 
in figure 7 are dominantly two-dimensional (i.e. in agreement with the numerical 
simulation of the two-dimensional Navier-Stokes equations). The fully developed two- 
dimensional flow, however, is unstable in the three-dimensional geometry, and the flow 
becomes disordered. 

At higher Reynolds numbers the level of asymmetry in the solution generated by the 
numerical model increases. Figure 8 shows observed instantaneous streamlines 
obtained from the numerical simulation for Re = 200, 300 and 400. For Re 2 400 the 
flow was observed to become aperiodic, but it is not clear whether these flows are 
chaotic, quasi-periodic or transient. This transition at high Reynolds numbers may 
have been caused by a numerical instability at the sharp edge of the baffles, or by the 
instability of the symmetric flow mentioned above. 

Figure 9 shows a streakline photograph for the fully developed flow at Re = 198. 
The flow is clearly different at the two ends of the cell, and the crossed streaklines 
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Re = 250 Re = 244 

FIGURE 7. Comparison of a sequence of instantaneous streamlines with video frames. 
$ at intervals of 0.05. (a)  t = to. (b) t = to+0.95. (c)  t = to+  1.9. 

suggest that the flow may be three-dimensional. Video observations of the flow in this 
regime show eddy shedding behaviour from both baffles. However, the eddy size varies 
considerably and the flow shows no periodicity. A streakline photograph for Re = 359 
is shown in figure 10. The flow appears to be wavelike, with a wavelength of two cells. 
The main stream of the flow sweeps across the bottom wall, while in adjacent cells the 
flow appears to sweep across the top wall. Video observations of the flow in the regime 
250 < Re < 450 show that this stationary wavelike flow tends to persist for some 
seconds, after which the wave swaps over to the opposite wall. While the main stream 
of the flow sweeps across one wall eddies are rapidly shed from the opposite baffle. 

Figure 11 shows a streakline photograph at Re = 537. Again the mainstream of the 
flow sweeps across the bottom wall. Video observations at this Reynolds number show 
a standing wave is observed in the channel with a wavelength of two cells. This 
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FIGURE 8. Instantaneous streamlines for asymmetric flows. (a) Re = 200. (b)  Re = 300. 
(c) Re = 400. 

FIGURE 9. Experimental streakline photograph for Re = 198. Exposure time = 4 s. 

wavelike structure was observed to be very stable, remaining for long periods despite 
the chaotic nature of the surrounding flow. This effect may be similar to the Coanda 
effect that has been observed in geometries with a flow expansion (e.g. Durst et al. 
1974). 

In order to establish the three-dimensional nature of the flow the cross-channel 
motion has been observed for a range of Re. The streakline photograph of the flow 
viewed from above at Re = 100 when the flow is steady, and at Re = 130 when the flow 
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FIGURE 10. Experimental streakline photograph for Re = 359. Exposure time = s. 

FIGURE 1 1 .  Experimental streakline photograph for Re = 537. Exposure time = s. 

is unsteady and periodic are shown in figures 12 and 13, respectively. Little cross- 
channel motion is apparent in either figure, confirming that the flow can be considered 
as two-dimensional in this regime. Figure 14 shows the equivalent streakline 
photograph at Re = 160. Some cross-channel motion is clearly apparent, indicating 
that the flow has become three-dimensional. At Re = 300 (figure 15) the cross-channel 
motion has developed into a highly complex flow regime. 

5. Observed stability behaviour 
This section describes the observed stability behaviour of the symmetric flows 

described above. The section is divided into three parts. A brief assessment of the 
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FIGURE 12. Experimental streakline photograph showing cross-channel motion for Re = 100. 
Exposure time = s. 

FIGURE 13. Experimental streakline photograph showing cross-channel motion for Re = 130. 
Exposure time = & s. 

expected perturbation behaviour is outlined below. This is followed by a test of the 
stability techniques described in 82, using the well-established case of an unbaffled 
channel. The third section describes the observed stability behaviour for the baffled 
channel flow. 

5.1. Expected perturbation behaviour 
The symmetric steady flows described above for Re 2 100 were observed to be 
approximately parallel. The behaviour of linear perturbations to parallel flows have 
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FIGURE 14. Experimental streakline photograph showing cross-channel motion for Re = 160. 
Exposure time = t s. 

FIGURE 15. Experimental streakline photograph showing cross-channel motion for Re = 300. 
Exposure time = $ s. 

been studied in detail (e.g. Lin 1955) and may give an insight into the stability 
behaviour of this more complicated geometry. The observations of Ghaddar et al. 
(1986) and Karniadakis et al. (1988) have shown that perturbations to obstructed 
channel flows show many similarities with the stability behaviour of parallel flows. 

The stability equations for a parallel flow can be reduced to a single equation known 
as the Orr-Sommerfeld equation (Drazin & Reid 1981). Solutions to this equation are 
usually assumed to be of the form 

$ = Re(y?f(y) exp (iax-ict)), (1 5 )  
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FIGURE 16. Instantaneous perturbation streamlines for a plane channel, Re = 700, L = 3 .33 .  

where Re( ) is the real part, @fa and c may be complex (Drazin & Reid 1981). In this 
paper the flow is periodic in x, so that a is real, and the flow was observed to become 
unsteady so c may be complex: 

c = yi+icr. 

Thus CL is the wavelength, 7 the frequency and CT the growth rate of the instability. 
The stability analysis can be treated as an eigenfunction (+f) eigenvalue (c) problem. 
For a given flow, Reynolds number, and wavelength (a),  a perturbation function (@f) 
and associated frequency and growth rate (c) can be obtained. If a flow is stable then 
all values of (T are negative for all values of a. 

Thus if the flow is approximately parallel a perturbation of the form of (1 5 )  and (16) 
may be expected, and x will grow or decay exponentially in time. A perturbation of the 
form of (15) and (16) will be wavelike, and a wavelike structure has been commonly 
observed for obstructed channel flows (Ghaddar et al. 1986; Karniadakis et al. 1988; 
Ralph & Pedley 1988). 

5.2. Plane channel pow 
The two-dimensional stability of plane channel flow is now fairly we!l understood, and 
accurate solutions to the perturbation equations have been reported in the literature 
(Orszag 1971). As this is a limiting case of the geometry studied in this paper (with 
B = 0) it is an appropriate geometry to use as a test case for the numerical techniques 
used for the stability study. 

The flow in the plane channel was accelerated from rest to Re = 700 and observed 
to reach a fully developed steady state, close to the known solution of Poiseuille flow. 
Once the flow has reached a fully developed state an arbitrary asymmetric perturbation 
is added, and the value of x was observed to decay. When x has become small the 
asymmetric part of the flow should converge to the least stable solution to the 
Orr-Sommerfeld equation. A wavelength of L = 3.333 (Ghaddar et al. 1986) was used 
as this is the least stable wavelength (largest value of (T) at this Re, ensuring that all 
shorter wavelengths will decay more rapidly. A plot of the perturbation stream 
function when x is small is shown in figure 16, which compares very well with the 
accurate solution given by Ghaddar et ai. (1986, their figure 4). The value of ,y is 
observed to decay exponentially, with a decay rate (c) of 0.210, close to the accurate 
value given by Ghaddar et af. (1986) of 0.209. The frequency of the perturbation ( r )  
can also be obtained by observing the behaviour of the perturbation velocity (v,) at a 
point on the centreline (this is easily obtained as v p  = v on the centreline). A value of 
7 of 0.165 was obtained, again close to the accurate value (from Ghaddar et al. 1986) 
of 0.164. 

These observations indicate that perturbation techniques used with the numerical 
model are adequate for the study of transition in two-dimensional flow. 

(16) 
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FIGURE 17. Developing asymmetry for Re = 200. 
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FIGURE 18. The behaviour of x for an asymmetric flow decelerated to Re = 60. 

5.3. The bafled channel 
Starting with symmetric flow in the baffled channel the symmetry constraint is then 
relaxed, and the value of x followed in time. If the flow is unstable asymmetric 
perturbations generated by truncation errors in the program will grow in time, and 
thus ,y will increase. Figure 17 shows the behaviour of x observed at Re = 200. As 
expected, an exponential behaviour was observed while x < 1, and a value for n at each 
unstable Re could be obtained. When the perturbation becomes large (x  of order 1) 
nonlinear effects take over and x approaches an asymptotic value. In order to obtain 
the value of n for stable flows the decay of an initial perturbation was observed. This 
was achieved by decelerating an unstable flow to the chosen stable Re once the value 
of x has reached - 0.1. The unstable perturbation at the higher Re should 
approximately correspond to the least stable mode at the stable Re. Figure 18 shows 
the observed behaviour of x once the flow has been decelerated to Re = 60. In this case 
an exponential decay has been observed and the value of cr can thus be obtained. In 
figure 19 cr is plotted against Re, and a critical Re for instability (B  positive) of 100-1 10 
has been obtained. 

Figure 20 shows the growth of the perturbation velocity at a point on the centreline 
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FIGURE 19. Instability growth rate versus Reynolds number. 
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FIGURE 20. The growing oscillation of the perturbation velocity at a point on the centreline for 
constant volumetric flow, Re = 200. 

for Re = 200. The growing unsteady oscillation suggests that the instability is due to 
a super-critical Hopf bifurcation. The expected nonlinear behaviour for this type of 
bifurcation is a self-sustained oscillation (as observed in figure 20) with the amplitude 
of the oscillation proportional to (Re - Rec):, where Re, is the critical Reynolds 
number. 

To observe the nonlinear behaviour of the unstable flows x is observed to grow until 
exponential behaviour is no longer observed (for x - 0.1). An asymptotic behaviour is 
observed for long times (see figure 17), and the asymptotic valse of x (xas)  is a measure 
of the amplitude of the self-sustained oscillation. The value of xas has been obtained 
for a range of Re, and a curve of the form of equation 17 fitted to the points, 

A,, = A(Re - Re,);. (17) 

Using fitting parameters A and Re, an excellent fit is obtained (see figure 21). A 
critical Reynolds number for asymmetry of 101 is obtained, in agreement with the 
linear analysis and the experimental observations. 

203 

10 
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FIGURE 21. Asymptotic level of asymmetry versus root criticality. 

6. The transition mechanisms 
In order to establish the mechanism for the transition to unsteady flow the 

perturbation streamlines, the frequency of the instability and the effect of varying the 
geometry have been studied. Stability theory dating back to 1896 (Rayleigh 1945) has 
shown that in the limit of vanishing viscosity a parallel flow is stable if the velocity 
profile has no point of inflexion. The instability of plane Poiseuille flow cannot be 
explained using inviscid theory, and it is conversely the viscosity of the fluid that is 
responsible for the observed instability (Drazin & Reid 1981). It is desirable to establish 
whether the observed instability in the baffled channel flow is caused by a viscous or 
by an inviscid instability, Viscous instabilities are commonly associated with 
Tollmien-Schlichting waves, which occur in the presence of a wall. Inviscid instabilities 
are associated with a point of inflexion in the velocity profile, normally in a shear layer. 

Figure 22 shows the perturbation streamlines at Re = 40 (stable) and Re = 200 
(unstable). These are obtained by subtracting the value of the streamfunction for the 
constrained symmetric flow (equation (13)) at each grid point from the value obtained 
when x is small. Only the symmetric perturbation streamfunction is plotted as 
antisymmetric perturbations were observed to be stable for all flows in this regime (up 
to Re = 400). The wavelike perturbation shown in figure 22 is very similar to the 
wavelike instability observed by Ghaddar et a!. (1986) for a periodically grooved 
channel and Karniadakis et al. (1988) for a periodically cylindrically obstructed 
channel. These workers observed that the frequency of the instability wave was 
approximately equal to the frequency of the least stable Tollmien-Schlichting wave for 
plane channel flow. This observation suggests that an instability in the shear layer is 
exciting the stable Tollmien-Schlichting waves in the channel. Thus the transition is 
generated by the inviscid instability in the shear layer, while the frequency of the 
instability is controlled by the viscous Tollmien-Schlichting waves. The frequency of 
the waves observed in figure 22 are 4 = 0.46 for both Re = 40 and Re = 200. This is 
not in agreement with the Tollmien-Schlichting frequency for the plane channel flow 
of - 0.68 (for a wavelength equal to the baffle spacing). Nor does the frequency 
compare with the Tollmien-Schlichting frequencies for the core Poiseuille flow. These 
observations are not altogether surprising as the baffles have clearly resulted in a very 
different flow from plane Poiseuille flow. The flows studied by Ghaddar et al. (1986) 
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(h) 

FIGURE 22. Instantaneous perturbation streamlines. (a) Re = 40, (b) Re = 200 

and Karniadakis et al. (1988) represented only a small perturbation from plane channel 
flow. 

The instability of a planar jet in a stationary fluid has been successfully modelled 
using inviscid theory (e.g. Sat0 1961). The constrained symmetric flow (figure 4) was 
observed to be similar to a planar jet flow, and the transition of the flow may be related 
to the transition behaviour of a jet flow. If we consider varying the baffle height (B)  
then the flow may be considered to be between two extremes: 

(i) As B / H  (see figure 1) approaches 0 the baffles will represent a small perturbation 
from plane Poiseuille flow. The frequency of the instability should tend towards the 
frequency of the least stable Tollmien-Schlichting wave (cf. Ghaddar et al. 1986; 
Karniadakis et al. 1988). 

(ii) As B approaches i H  the flow tends towards a planar jet in a stationary fluid, with 
the walls having little effect. 

The stability behaviour of a plane jet has been shown to depend on the velocity 
profile (Sato 1961), with the instability wave normally observed to travel at the velocity 
at the point of inflexion in the velocity profile. Sat0 (1961) has shown that a sinuous 
plane jet instability is commonly less stable than a varicose instability, in agreement 
with the observations for the baffled channel flow. Betchov & Criminale (1967) have 
shown that the presence of a confining wall will reduce the wave speed below the 
velocity at the point of inflexion. The frequency of the instability wave at Re = 200 has 
been established for a range of baffle heights corresponding to flow area constrictions 
of 6 = 2B/H x 100% = 12.5, 25, 32.5, 50, 62.5,66.75 and 75 %. At baffle constrictions 
with 6 > 50 YO grid refinement tests were performed to ensure numerical accuracy. For 
the largest two baffle heights (6 = 66.75 YO and 75 YO) a refined grid of 42 x 128 points 
was required. 

The wavelength of the flow instability is restricted to being an integer fraction of the 
cell length, and a wavelength of one cell was observed where 6 < 62.5 %. Figure 23 
shows the perturbation streamlines for 6 = 66.75 YO and 75 %. In these cases the 
wavelength is one half of a cell, and the walls do not appear to interfere strongly with 
the perturbation wave. This decrease in wavelength is to be expected, as both the ‘jet’ 
width, and the width of the shear layers has decreased. 

For each value of 6 the frequency of the instability was obtained from the velocity 
fluctuations at a point on the centreline. The wave speed was then obtained as the 
product of the wavelength and the frequency of the instability. Figure 24 shows a plot 
of the wave speed versus the baffle constriction 6. Also shown on the plot are lines 
corresponding to the wave speed of the Tollmien-Schlichting wave for a wavelength 
equal to the baffle spacing and the velocity at the point of inflexion for the velocity 
profile midway between the baffles. As expected the wave speed tends towards the 
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FIGURE 23. Instantaneous asymmetric perturbation streamlines, Re = 200. (a) 6 = 66.75 YO. 
(b) 6 = 75 Yo. 
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FIGURE 24. Velocity of the perturbation wave versus baffle constriction. 
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speed of the least stable Tollmien-Schlichting wave as 5 approaches 0 YO. As 6 becomes 
large the wave speed tends towards the velocity at the point of inflexion, though the 
presence of the walls appears to have considerably reduced the wave speed (Betchov 
& Criminale 1967). 

From these observations the instability mechanism for the case studied in this paper 
(6 = 50 Yo) would appear to be an inviscid instability associated with the shear layer. 
The frequency of the instability does not appear to be controlled by any simple 
mechanism, but is a complex interaction of the whole flow field. Viscous effects, the 
shear layer and the confining walls may all affect the wave speed of the instability, but 
the shear layer itself is thought to be primarily responsible for the transition to 
unsteadiness. 

7. Discussion and conclusions 
A numerical simulation has been successfully used to model two-dimensional 

incompressible Newtonian flow in baffled channels. The observed flows have been 
depicted using plots of the instantaneous streamlines, and these have been compared 
with experimental streakline photographs. Good agreement was observed between the 
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numerical simulation and the experimental flow visualization when the experimental 
flow was approximately two-dimensional. 

For low-Reynolds-number (Re  < 100) flow in baffled channels, a recirculating 
region was observed downstream of each baffle. With increasing Re the reattachment 
point was observed to move downstream until it became attached onto the downstream 
baffle. These flow patterns can be compared with the similar flows predicted by Rowley 
& Patankar (1984) for constant volumetric flow in baffled tubes. The flow patterns 
observed are also similar to flows observed in wavy walled channels (Sobey 1980), wavy 
walled tubes (Ralph 1986, 1987), and other similar geometries such as the sudden 
channel expansion (e.g. Sobey 1985). 

At Re - 100 the flow was observed both numerically and experimentally to become 
unsteady and asymmetric. The experimental observations showed that this led to a 
secondary transition to three-dimensional turbulent flow. The baffles have therefore 
acted as a turbulence enhancement device leading to early transition, which will 
improve engineering properties such as heat transfer. Experimental data on heat 
transfer in baffled channels can be found in Kays & London (1964). This data shows 
that the baffles lead to a three-fold enhancement of the heat transfer coefficient, but at 
the expense of a three- to four-fold increase in pressure drop. Rowley & Patankar 
(1984) modelled heat transfer processes and predicted that the presence of periodic 
baffles in tubes would not provide efficient enhancement. They suggested that the slow 
moving recirculating regions effectively insulated the bulk of the fluid from the walls. 
The model used by Rowley & Patankar (1984) assumes the flow to be steady and 
axisymmetric up to Re - 500, contrary to experimental observations (Ni, private 
communication). Mackley, Tweddle & Wyatt (1990) observed that the presence of 
periodic baffles in a tube could lead to a dramatic enhancement in heat transfer for 
constant volumetric flows. A two-fold enhancement was found at Reynolds numbers 
as low as 300, contrary to the predictions of Rowley & Patankar (1984). 

These observations indicate that the flow in complex geometries can become 
unsteady and turbulent at Reynolds numbers as low as 100. Engineering models 
commonly assume that the flow is steady or symmetric up to Reynolds numbers of 
order 1000, and this assumption should clearly not be taken for granted. 

The successful modelling of early transition to turbulence in obstructed geometries 
may lead to an improved understanding of the operation of turbulent enhancement 
devices. If the mechanism for transition in this type of flow can be established then it 
may be possible to improve the design of turbulence enhancement devices. Karniadakis 
et al. (1988) demonstrated that in order to optimize the efficiency of such devices it was 
simply necessary to find the design that gave the minimum critical Reynolds number 
for transition to unsteady flow. However this calculation assumed that the increased 
energy loss associated with the obstruction is small. For severely constricted geometries 
such as the baffled channel the increase in energy loss owing to the presence of the 
baffles will clearly be significant, and the optimization of the geometry is more 
complex. An early transition to unsteady flow has commonly been observed in 
obstructed flows (e.g. eddy shedding from a cylinder), and this is normally associated 
with the presence of a shear layer. Rayleigh (1945) showed that a parallel flow with a 
point of inflexion in the velocity profile (this occurs in a shear layer) will be unstable 
in the inviscid limit. Conversely a flow with no point of inflexion can be shown to be 
stable in the inviscid limit. The presence of a shear layer appears to be critical for 
advancing transition. The object of geometric optimization should therefore be to 
obtain a sustained shear layer at a minimum Reynolds number with as little increase 
in energy loss as possible. Wire mesh inserts may well provide an excellent geometry 
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as each wire generates two shear layers which lead to an eddy shedding flow at low 
Reynolds number. 

The experimental observation of the secondary transition to three-dimensional 
turbulence may have implications for transition processes in many similar geometries. 
The periodically cylindrically obstructed channel of Karniadakis et ul. (1988), for 
example, was predicted to become unsteady at a Reynolds number of order 100, owing 
to a two-dimensional instability. It is likely that experimental observations or three- 
dimensional simulation of the flow in this geometry would show that this transition 
would be followed by a secondary instability to three-dimensional perturbations. This 
is similar to the mechanism for transition in plain channel flow observed experimentally 
at a Reynolds number of order 2000 (Orszag & Kells 1980). 

The author is grateful to Dr M. R. Mackley and Dr N. E. Sherman for many 
valuable discussions, and to Professor T. J. Pedley for his suggestion that the flow 
might be treated as a confined jet. The project was carried out at the University of 
Cambridge Department of Chemical Engineering and was funded as a CASE award by 
BP Research and the SERC. 
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